Comparative Molecular Dynamics Simulation of Hepatitis C Virus NS3/4A Protease (Genotypes 1b, 3a and 4a) Predicts Conformational Instability of the Catalytic Triad in Drug Resistant Strains

نویسندگان

  • Mitchell Kramer
  • Daniel Halleran
  • Moazur Rahman
  • Mazhar Iqbal
  • Muhammad Ikram Anwar
  • Salwa Sabet
  • Edward Ackad
  • Mohammad Yousef
چکیده

The protease domain of the Hepatitis C Virus (HCV) nonstructural protein 3 (NS3) has been targeted for inhibition by several direct-acting antiviral drugs. This approach has had marked success to treat infections caused by HCV genotype 1 predominant in the USA, Europe, and Japan. However, genotypes 3 and 4, dominant in developing countries, are resistant to a number of these drugs and little progress has been made towards understanding the structural basis of their drug resistivity. We have previously developed a 4D computational methodology, based on 3D structure modeling and molecular dynamics simulation, to analyze the active sites of the NS3 proteases of HCV-1b and 4a in relation to their catalytic activity and drug susceptibility. Here, we improved the methodology, extended the analysis to include genotype 3a (predominant in South Asia including Pakistan), and compared the results of the three genotypes (1b, 3a and 4a). The 4D analyses of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) indicate conformational instability of the catalytic site in HCV-3a and 4a compared to that of HCV-1b NS3 protease. The divergence is gradual and genotype-dependent, with HCV-1b being the most stable, HCV-4a being the most unstable and HCV-3a representing an intermediate state. These results suggest that the structural dynamics behavior, more than the rigid structure, could be related to the altered catalytic activity and drug susceptibility seen in NS3 proteases of HCV-3a and 4a.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: Comparative Molecular Dynamics Simulation of Hepatitis C Virus NS3/4A Protease (Genotypes 1b, 3a and 4b) Predicts Conformational Instability of the Catalytic Triad in Drug Resistant Strains

Copyright: ß 2014 The PLOS ONE Staff. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

متن کامل

A 3D structural model and dynamics of hepatitis C virus NS3/4A protease (genotype 4a, strain ED43) suggest conformational instability of the catalytic triad: implications in catalysis and drug resistivity

Egypt has the highest prevalence of hepatitis C virus (HCV) infection worldwide with a frequency of 15%. More than 90% of these infections are due to genotype 4, and the subtype 4a (HCV-4a) predominates. Moreover, due to the increased mobility of people, HCV-4a has recently spread to several European countries. The protease domain of the HCV nonstructural protein 3 (NS3) has been targeted for i...

متن کامل

Computational Study on the Inhibitor Binding Mode and Allosteric Regulation Mechanism in Hepatitis C Virus NS3/4A Protein

HCV NS3/4A protein is an attractive therapeutic target responsible for harboring serine protease and RNA helicase activities during the viral replication. Small molecules binding at the interface between the protease and helicase domains can stabilize the closed conformation of the protein and thus block the catalytic function of HCV NS3/4A protein via an allosteric regulation mechanism. But th...

متن کامل

In Vitro Antiviral Activity and Resistance Profile of the Next-Generation Hepatitis C Virus NS3/4A Protease Inhibitor Glecaprevir

Glecaprevir (formerly ABT-493) is a novel hepatitis C virus (HCV) NS3/4A protease inhibitor (PI) with pangenotypic activity. It inhibited the enzymatic activity of purified NS3/4A proteases from HCV genotypes 1 to 6 in vitro (half-maximal [50%] inhibitory concentration = 3.5 to 11.3 nM) and the replication of stable HCV subgenomic replicons containing proteases from genotypes 1 to 6 (50% effect...

متن کامل

The interdomain interface in bifunctional enzyme protein 3/4A (NS3/4A) regulates protease and helicase activities.

Hepatitis C (HCV) protein 3/4A (NS3/4A) is a bifunctional enzyme comprising two separate domains with protease and helicase activities, which are essential for viral propagation. Both domains are stable and have enzymatic activity separately, and the relevance and implications of having protease and helicase together as a single protein remains to be explored. Altered in vitro activities of iso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014